Printed Pa	age:-04	Subject Code:- BCSBS0205Z Roll. No:	=
NOIDA	(An Autonomous Institute Af B.T SEM: II - THEORY EXAM	ech MINATION (2024 - 2025)	
Time: 3	Subject: Lin	ear Algebra Max. Marks: 10	Λ
	nstructions:	Max. Marks. 10	U
IMP: Verif	fy that you have received the question j	paper with the correct course, code, branch etc.	
	· · · · · · · · · · · · · · · · · · ·	ns -A, B, & C. It consists of Multiple Choice	
	(MCQ's) & Subjective type questions.	ad an right hand side of each question	
	m marks for each question are thatcate e your answers with neat sketches whe	ed on right -hand side of each question. rever necessary.	
	suitable data if necessary.		
	bly, write the answers in sequential ord		
	t should be left blank. Any written mate	erial after a blank sheet will not be	
evaluated/c	спескеа.		
SECTION	J_ A .	29	n
1. Attempt		202	U
-	If a matrix A is symmetric as well as sk	raw symmetric than: (CO1 K1)	1
		ew-symmetric, then. (CO1, K1)	1
(a)	A is diagonal matrixA is a unit matrix		
(b)		(1) ×	
(c) (d)	A is a triangular matrix A is a null matrix	3	
` '			1
1-b.	$\begin{bmatrix} 1 & 3 & \lambda + 2 \\ 2 & 4 & 8 \end{bmatrix}$		1
I	If the matrix L^3 5 L^3 1 is singular, the	hen λ equals (CO1,K2)	
(a)	-2		
(b)	2		
(c)	4		
(d)	-4		
1-c. I	If the rank of a matrix A is 2, then the r	ank of A' is (CO2, K2)	1
(a)	3		
(b)	2		
(c)	8		
(d)	16		
1-d. I	If the set of r n-vectors are dependent, t	then values of all scalars be (CO2,K2)	1

	(a)	O .				
	(b)	1				
	(c)	2				
	(d)	None of these				
1-e.	W	Thich of the following is false? (CO3,K2)	1			
	(a)	Every subspace of a vector space is itself a vector space.				
	(b)	Every vector space is a subspace of itself.				
	(c)	The intersection of any two subspaces of a vector space V is a subspace of V.				
	(d)	The union of any two subspaces of a vector space V is a subspace of V				
1-f.	In	In the vector space V if $a+b=b+a$; where a, $b \in V$ is called (CO3,K1)				
	(a)	Associativity				
	(b)	Additive inverse				
	(c)	Commutative				
	(d)	None of these				
1-g.	W	hat should be the Eigen values for the matrix given below?	1			
	А	$= \begin{bmatrix} 6 & 3 \\ 4 & 5 \end{bmatrix}_{\text{(CO4,K3)}}$				
	71					
	(a)	2 & 9 2 & 10 1 & 9 2 & 7 That is the general form of characteristic equation of matrix? (CO4 K1)				
	(b)	2 & 10				
	(c)	1 & 9				
	(d)	2 & 7				
1-h.	W	That is the general form of characteristic equation of matrix? (CO4,K1)	1			
	(a)	$ \mathbf{A} - \lambda \mathbf{I} = 0$				
	(b)	$ \mathbf{A} - \lambda = 0$				
	(c)	$ \mathbf{A} - \mathbf{I} = 0$				
	(d)	$ \mathbf{A}\mathbf{I} - \lambda \mathbf{I} = 0$				
1-i.	If	the order of A is 4×3 , the order of B is 4×5 and the order of C is 7×3 , then	1			
	th	the order of $(A^T B)^T C^T$ is (CO5,K2)				
	(a)	5×3				
	(b)	4×5				
	(c)	5×7				
	(d)	4×3				
1-j.	In	PCA, what are the principal components? (CO5,K4)	1			
	(a)	Features of the dataset				
	(b)	Eigenvalues of the covariance matrix				
	(c)	Eigenvectors of the covariance matrix				
	(d)	Data points in the dataset				

2. Attempt all parts:-2.a. Define orthogonal matrix. (CO1,K1) 2 2.b. 2 2 2.c. Define norm of a vector. (CO3,K2) 2.d. 2 $A = \begin{bmatrix} -2 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ For the matrix A, Find the sum of eigen values where (CO4,K2)Write any two examples of singular value decomposition in machine learning. 2 2.e. (CO5,K5)**SECTION-B** 30 3. Answer any five of the following:-3-a. By using the properties of determinants, show that: 6 $\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a - b)(b - c)(c - a) (CO1, K2)$ Find the value of x and y if: $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$ 3-b. 6 $A = \begin{bmatrix} 1 & 1 & 0 & -2 \\ 2 & 0 & 2 & 2 \\ 4 & 1 & 3 & 1 \end{bmatrix} (CO2, K2)$ 3-c. 6 Find the rank of the matrix: Solve the system of equations: x+y+z=0, x+2y-z=0, 2x+y+3z=03-d. 6 (CO2,K3) If α and β are vectors in an inner product space then show that 3.e. If α and β are vectors in an inner product space ... $\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2 \cdot (CO3, K3)$ Find the eigen values and eigen vector of the matrix of $\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 1 & -2 & -8 \\ 0 & -5 & 1 \end{bmatrix}$ 6 3.f. 6 . (CO4,K3) What are the applications of principal component analysis in image processing? 3.g. 6 Explain. (CO5,K4) **SECTION-C** 50 4. Answer any one of the following:-Calculate the inverse of the 4-a. 10

$$A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix} . (CO1, K2)$$

4-b. Solve the system of equations for the linear equations with 3 variables using Cramer's rule. (CO1,K2)

10

$$x - z = 11$$

$$7x - 4y - z = -15$$

$$4x + 6y + 5z = -6$$

5. Answer any one of the following:-

5-a. Show that the equations 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 510 are consistent and solve them by rank method. (CO2,K3)

5-b. Find the rank of the matrices by reducing it to canonical form: (CO2,K3) 10

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$

6. Answer any one of the following:-

Show that for the vectors $\alpha = (\mathbf{x}_1, \mathbf{x}_2)$ and $\beta = (\mathbf{y}_1, \mathbf{y}_2)$ from \mathbb{R}^2 , the following defines 10 6-a. an inner product on \mathbb{R}^2 :

10

10

$$<\alpha,\beta>=x_1y_1-x_2y_1-x_1y_2+2x_2y_2$$
. (CO3, K3)

Show that the vectors (3,0,0,0), (3,-1,1,0), (5,-1,1,3), (6,0,1,3) are linearly 6-b. 10 independent over R. (CO3,K3)

7. Answer any one of the following:-

Show that the mapping $T:V_2 \rightarrow V_3$ defined as T(a,b) = (a+b,a-b,b) is a linear 7-a. transformation from V_2 into V_3 Find the range, rank, null-space and nullity of T.

(CO4,K3)

7-b.

$$A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$$
 is a Unitary Matrix, where ω is a cube 04,K3).

Show that the matrix root of unity. (CO4,K3).

8. Answer any one of the following:-

Find the Singular Value Decomposition of a matrix $\begin{bmatrix} -4 & -7 \\ 1 & 4 \end{bmatrix}$ (CC) 8-a.

8-b. Find the covariance matrix and the principal components of the following: 10 (CO5,K4)

X	2.5	0.5	2.2	1.9	3.1	2.3
Y	2.4	0.7	2.9	2.2	3.0	2.7